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SECTION I. GENERAL INTRODUCTION



INTRODUCTION AND EXPLANATION OF DISSERTATION FORMAT

Reliability is extremely important for systems involving issues of
high cost (e.g., space program), safety (e.g., nuclear power plant), or
security (e.g., military equipment). By definition, reliability is the
probability of failure—free operation of a system under specified
conditions for a specified period of time. The system could be a
hardware system, a software system, a human body, or a combination of
these. As missions to be accomplished are becoming more and more
complicated, the need for highly reliable systems is inevitable. In
achieving high reliability, three problems are faced by reliability
engineers. First, the reliability—cost funcltion increases
exponentiaily. Second, the reliability of a component is usually
limited by technology. Third, resources for achieving high reliability
are limited. These problems lead to the sgbject of reliability
optimization,

Fifteen years ago, reliability studies concentrated on hardware
systems. Both reliability theory and reliability optimization are
well—known in terms of problem formulation and problem solving
techniques. Since the 1960s, software has become increasingly an
important part of larger systems. Since 1970, the cost of software has
surpassed the cost of hardware as the major cost factor of a system.

In response to this dramatic change, researchers began developing
models for software reliability in.the 1970s., Compared to the

exponential growth in demand and size of today's software projects,



software reliability modeling is still in its infancy. In many cases,
softﬁére cannot be treated as an isolated element. A complex system
contains hardware subsystems and software subsystems both interacting
with each other. Unfortunately, very few researchers have studied this
issue. This research investigates methods for optimizing system
reliability involving software and hardware.

Traditionally, the reliability of a hardware system is improved by
adding redundant components or by using better components. Determining
the number of redundancies at each stage or the reliability level at
each stage ;nder available resources is the major concern in
reliability optimization. Since the available options of an identical
function component are finite and the number of redundancies is an
integer, the growth of reliability, in either case, is discrete.
Numerous techniques have been proposed for reliability optimization
problems, The Lagrange multiplier method, dynamic programming method,
branch-and-bound method, maximum principle method, and heuristic method
are popular techniques,

When software is involved, the techniques for hardware reliability
optimization have to be reevaluated. First, redundancy of software can
not be treated the same as hardware. The failure of a hardware
component is primarily due to random failures and material
deterioration. Parallel redundancy is based on the assumption of
independent failure of components. Software failure is due to

incorrect logic or incorrect statements in the program. An input state



which causes one copy of software to fail will do so for all copies.
Although some people may argue that a redundant copy of software can be
produced by an independent group, research has indicated that people
make the same mistakes in software development. The degree of
dependency among independent groups remains unanswered., Therefore, the
issue of software redundancy is much more complicated. Secondly, the
improvement of software reliability is primarily through debugging
rather than redundancy. Even though the "number of faults" in a
program is countable and the actual improvement of software reliability
is discrete, most software reliability models are continuous models as
opposed to the discrete growth in hardware redundancy. Therefore, the
traditional method of integer programming for- hardware redundancy.
allocation is not appropriate for software.

When reliability optimization involves software and hardware, two
types of decision variables need to be determined. For hardware, the
decision variable is the number of redundancies which is an integer.
For software, the decision variable is the reliability level which is a
real number. When both types of decision variables are involved, the
problem becomes a mixed-integer programming problem. Moreover, the
reliability function and the constraint functions for software and
hardware systems are nonlinear functions. Mixed integer programming
for linear function is better known. But very few methods have been

proposed for nonlinear mixed-integer programming problem.



This dissertation uses the alternate format. It is composed of
five self-explanatory, yet related papers. In Sections II and III, two
methods are proposed for mixed-integer reliability optimization
problems. Section IV is a review and classification of software
reliability models. It focuses on the nature of software, assumptions
of software reliability modeling, factors affecting software
reliability modeling, and modeling techniques. This review paves the
way for future research in software reliability modeling and
applications of software reliability model. Section V is a software
Life-cycle cost model for the optimal release time. The motivation is
to point out the issue of software reliability cost and emphasize the
‘life c&cle approach to the problem. Section VI integrates the material
Erom Sections II through V. The purpose is to incorporate software
into the reliability optimization problem., An abstract of each paper

appears below,

Abstract of Section II

Section II, "A Comparative Study of Heuristic Reliability
Optimization Methods" investigates the effectiveness of a mixed-integer
programming method. This method is a combination of the heuristic
redundancy method and the sequential search method. The heuristic
method determines the integer variables (number of redundancies) by
assuming that the real variables (reliability level) are known. The

sequential search method determines the real variables. At each



iteration, a point in the multi-dimensional real space is chosen. Once
the real variables are fixed, the heuristic method is applied to find
the integer variables. When both types of decision variables are
determined, the objective function can be computed. The next iteration
moves to a new point according to the search strategy. As the search
proceeds, the current best solution is continuously updated.

Heuristic¢ redundancy methods and sequential search methods were
developed independently for different types of problems. Many
heuristic redundancy methods have been proposed for the integer
programming problem. Also, many séquential search methods have been
proposed for real-variable peak~finding problems. This paper
investigateé their relative merits in obtaining the optiqum solution.
Four heuristic methods and two sequential search methods were studied.
Simulation was used to test these eight combinations on 100 simulated
problems. The test problem is based on a bridge structure with three
nonlinear constraints.

Results of this simulation show that when heuristic methods are
used to solve pure integer programming problem, the quality of the
answer is proportional to the CPU time required to obtain the answer,
When the sequenfial search technique is added to thg heuristic method
to solve the mixed-integer programming problem, the sequential search
method is more significant in obtaining the optimal solution. This
method is slow. But it takes advantage of the existing search methods

and heuristic methods, and can solve a variety of problems.



Abstract of Section III

Section III, "Reliability Optimization with Lagrange Multiplier
and Branch-and-Bound," presents a new method for the>mixed~integer
reliability optimization problem by using the Lagrange multiplier
method and the branch-and-bound method. The Lagrange multiplier method
solves a constrained problem by introducing Lagrange multipliers. By
multiplying Lagrange multipliers to each constraint and adding to the
objective function, the constrained problem becomes unconstrained.
According to the Kuhn-Tucker conditions, the necessary condition for an
optimum to exist is that the first derivative vanishes. By taking
derivative with respect to the number of components at each stage, the
reliability level of the components, and Lagrange multipliers, a set of
simultaneous equations are formed. The solutions to the set of
simultaneous equation are stationary pointg to the problem. Since this
method is based on differentiation, all variables are treated as real
variables. A solution obtained by this method is a real number
solution.

The branch-and-bound method is then used to obtain the integer
solution for integer variables. The branch-and-bound for integer
programming divides the solution space by imposing a lower bound
constraint to one problem and an upper bound constraint to another
problem. For example, a constraint x € 3 is added to one problem and x
2 4 is added to another when an integer variable takes value between 3
and 4. The process continues until all the integer variables become

integer and no better solutions can be found.



The results show that this method is superior to the method
presented in Section I. The reasoning process is more logical than the

heuristic method in obtaining the optimal solution.
Abstract of Section IV

Section IV, "A Review and Classification of Software Reliability
Models," focuses on how a software reliability model is derived and how
the reliability of software can be measured.

Hardware reliability models are normally based on failure data.
If a particular distribution fits very well to the failure data of a
particular hardware, this distribution is used to estimate and predict
the reliability of that hardware. However, this approach is not
appropriate for software. Although many software reliability models
have been proposed, very few of them have been tested on a variety of
software products and very few of them have proven to be effective for
a variety of software products. One of the difficulties is that each
software is a new product. Past experiences can only serve as a
reference point.

Most software reliability models are theoretical models derived
from assumptions. Software reliability theoreticians believe that
there are some factors governing the failure process. Depending upon
the assumptions imposed, dozens of software reliability models have
been proposed. These models and related materials from about 300

papers are reviewed and classified in Section IV. Attributes of



software reliability models are also discussed. Special attentions is
given to the probabilistic models which can further be divided into the

binomial model, Poisson model, and Markov process.
Abstract of Section V

The reliability optimization problem in Sections II and III
implied that a functional relationship between software reliability and
cost exiéted. Section V, "Reliability Cost in Software Life Cycle
Models,'" investigates this relationship., It is recognized that 60% of
the software life—cycle costs are incurred after release and the
maintenance cost depends heaviiy upon the reliability at the release
time, Thus, an optimum release time model based on the nonstationary
birth-and-death process is proposed. The trade—off between debugging

cost and maintenance cost is studied.
Abstract of Section VI

Section VI, "Reliability Optimization with Software Components,"
integrates reliability-redundancy allocation techniques, software
reliability-cost function, and software redundancy into a system
reliability optimization problem. A series system with hardware
components and software components is studied, The failure of hardware
redundancies are independent of each other, while the failure of

software redundancies are partially independent.
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The unknown variables of this reliability optimization problem are
the number of hardware redundancies, the number of software
redundancies, the hardware reliability levels and the software
reliability levels. The mixed-integer programming techniques in
Sections II and III are used to solve this problem. Software
reliability model in Section IV and software reliability cost in

Section V are adapted to formulate the objective and constraint

functions of this problem,
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SECTION II., A COMPARISON OF HEURISTIC RELIABILITY OPTIMIZATION METHODS



12
INTRODUCTION

Many optimization techniques have been proposed to allocate
redundancy or reliability level for a system of series configuration
(15]. But more important than optimizing system reliability with
respect to a single type of variable, both redundancies and reliability
levels are usually determined simultaneous. The purpose of this study
is to investigate methods to maximize the reliability of a complex
system subject to nonlinear constraints. Sequential search techniques
and reliability optimization heuristics commonly used for optimizing a
single type of variable are combined for solving a mixed-integer
programming problem. Performance of these heuristics is accomplished
through simulation. |

In this study, the system reliability is based on the following
definition of a.sysﬁem. A system is compoged of one or more stages (or
subsystems). A stage is a unique functional unit of the system and may
be composed of one or more components. Cost functions at different
stages are assumed to be additive, The system reliability is the
probability of successful operation of a system for a specified period
of time under given conditions. It is usually expressed in terms of
the reliabilities of both the stages and components. In evaluating the
system reliability, it is necessary to specify the system structure,
the component failure process, and the definitions of failures.

For a series system, the system is operational only when all the

stages are operational. For a parallel system, the system is
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operational if one or more stages are operational. A general system
(or complex system) is a nonparallel nonseries system, whose
reliability can be evaluated by probability theory Sﬁ;; fhe system
structure is clearly defined. Other types of structures are the
parallel-series system and the series—-parallel system. In this study,
a nonparallel-nonseries system is investigated. It is assumed that
its components are independent of each other and the component
reliability is deterministic., Figure 2,1 lists the system structures
and their system reliabilities.

The reliability of a system can be impro?ed by increasing the
component reliability or adding redundant components. The first method
determines the compcnent reliability levels to maximize the system
reliability or minimize the total cost. However, this approach may not
be economical because of the exponential increase of the reliability-
cost function. Also, the highly reliable component may not be
available, The second method determines the number of redundancies at
each stage, which means that if more components are used, the system
gets voluminous, heavy, and costly. Quite frequently, optimization
problems refer to only one of these two options. In the design stage,
however, the reliability optimization me}hods should consider the
tradeoff between reliability and redundancy with respect to cost and
performance requirements. The component reliability is a real number
between 0 and 1, while the number of redundancies is an integer number.

To optimize both decision variables simultaneously, a mixed—integer

programming problem is involved.
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FIGURE 2.1. Structure diagrams
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This mixed-integer reliability optimization problem was first
given by Misra and Ljubojevic [9] to solve a fouf—stage series system
using the Lagrange multiplier technique. Another method was given by
Tillman et al. ([13] that combines the sequential search method with a
heuristic redundancy method proposed by Aggarwal et al. [2]. The
sequential search method moves from point (a combination of decision
variables) to point in the solution space to find the optimal solution
of a multivariable function. When it is applied to the reliability
optimization problem, the component reliabilities are the decision
variables and the system reliability is the oﬁjective funection to be
maximized. For each move (change in the component reliability), the
heuristic redundancy method is applied to determine the number of
redundancies at each stage. Once the component reliabilities and the
number of redundancies are determined, the system reliability is
calculated and compared to the current best solution. If the solution
is better, the current best solution is updated. The search continues
until the stopping rule is reached. This method takes advantage of
both the existing heuristic redundancy allocation methods and the
sequential search methods. The algorithm is shown in Fig. 2.2, The
third method, which modified some of the existing heuristics [4,13],
was presented by Gopal et al. [4]. In their approach, component
reliabilities are sequentially increased in order of descending value
of a predefined sensitivity function. For every change in component
reliability, redundancies are allocated to determined the new system

reliability. At each stage, an inferior solution is rejected.
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FIGURE 2.2. Combination of heuristic and search methods
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Previous studies use a specific redundancy heuristic and a
specific search method to solve a specific problem [4,13]. The
heuristics' performance has not been investigated. This study intends
to combine each of the two search methods [4,5] with each of the four
major heuristic redundancy methods [3,6,11,12]., Comparison is based on
a nonparallel-nonseries bridge system subject to three nonlinear
constraints. One-—hundred test problems are randomly generated. Each

is tested by eight combinations of the methods.
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REVIEW OF THE HEURISTIC REDUNDANCY ALLOCATION METHODS

Notation:
Rg, Qg reliability and unreliability of the system
Rj, Qj reliability and unreliability of the jth stage
£y, qj reliability and unreliability of component j
Xj number of components at stage j
R (ry,*+*,rN); vector of component reliability
X (x1,°+*,xN); vector of the number of
components used at each stage:
gi ith constraint
gij _ amount of resource i consumed at stage j
b; amount of resource i available |
N Xi
b$ bj - I Agj;(k)
j=l k=1
Cj(rj) cost function of the jth component reliability
Cg system cost function
h step size; amount of increment in component
reliability
L+1 ' set of all the stages whose reliabilities
can be increased.
x*P current optimal solution
X< current solution
X(£5) (xl,---,xjil,---,xn); add/subtract 1 at stage j

X(~j,+s) (xl,-'-,Xj—l,'~~,xs+1,'-o,xn); subtract 1 from x;
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and add 1 to x4

s(j) AQg (x;); decrement in Qg by increasing
X by 1

Afj(Xj) lnRj(Xj) - 4nRj(Xj - 1)

Ag; ; (x;) gij(x)) - gg;x; - 1)

AQj(Xj) decrement in Qj by increasing X; by 1.

The redundancy optimization problem can be formulated as
Max Rg(X|R)
subject to

jglgij(xj) < b; for all i.

Assuming that the component reliabilities, R = (rl, ceey rN), are
given constants, the above problem is to determine the number of
redundancies at each stage, X = (x7, ..., xy).

Depending upon the type of structure, failure mode, and constraint
functions, the above problem may be converted into different forms [7].
Since 1956, numerous techniques have been proposed to solve a variety
of reliability redundancy optimization problems [14,15]. Yet, none of
them can effectively solve a large-scale general system with multiple

nonlinear constraints. Those techniques are restricted to one or more

of the following.
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Limited to a special type of system configuration, normally
the series system,

Limited to a special type of constraint function, for example,
the linear constraints,

Limited by the dimension of the problem,

Nonguaranteed global optimal solution,

Complicated computation.

Treated the problem as a nonlinear noninteger optimization,
then approximated the optimal decision variables to an integer

number through extensive discussion,

Therefore, heuristic redundancy allocation methods have been

suggested. . The heuristic method has the properties of simplicity,

generality, and efficiency [7,15]. Many algorithms have been able to

solve

the series system with multiple nonlinear constraints

(2,3,6,7,11], although global optimality is not yet guaranteed.

Most redundancy allocation heuristics are based on the following

steps.
10

20

Initialize each stage with one component.

Evaluate the sensitivity function to determine the stage to
which a redundant component is to be added. A sensitivity
function is defined as the trade—off between the increment
of system reliability and the resources consumption.
Increase the number of redundancies by one at the proposed

stage and repeat steps 2 and 3 until the constraint is

violated.
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Four major heurigtic redundancy methods compared in this study are

summarized below.

Sharma and Venkateswaran Method (S-V)

The S-V method [12] is based on a series system of small Q;'s.
For a series system, the unreliability of the system can be expressed

as follows.

N N N
Min Qg =1 - M (1-0Qj) = ZQ;=2E q}‘J
J=1 J=1 J=1_

By this approximation, the maximization of Rg is equal to the
.minimization of the sum of Qj's. Therefore, adding a redundancy to the
stage having the largest Qj would increase the system reliability by
the largest amount. Although this method is simple and efficient, it
does not incorporate the constraint functions into the selection
criteria. In general, it does not yield the optimal solution as shown
by Nakagawa and Miyazaki (10] and this study. The relative error
increases and the optimality rate decreases as the number of decision

variables increase.
The Gopal, Aggarwall, and Gupta Method (G-A-G)

The G-A-G method [3] is an improved version of their previous

works [1,2]. A relative increment of resource is defined as

Agzj(xj) = Agij(xj)/m?x {Agij(xj)}.
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A selection factor evaluates the ratio of relative increment of
resource over the decrement of stage unreliability. A redundant
component is proposed to be added to the stage having the least value

of selection factor. The selection factor is defined as

Fj(xj) = m?x {Agfj(xi)}/AQj(Xj).

For the series,

X3 xi+1 X3
8Qj(x) =aq; ' - = rjqy”

The selection factor, Fj(xj), can be written in the following forms,

a. The series system with linear constraints:
Fj(xj) = Fj(Xj“l)/qj for x5 > 1

Fj(l) = may {Agij(l)}/rjqj for x; = 1.

b. The series system with nonlinear constraints:

Fj(x;) = m?x {Aggj(xj)}/fj(Xj)

fj(xj) = quj(Xj-l) for x; > 1
fj(l) = rjqj for x; = 1,
¢. The complex system:

80 (x7) = Qs (Qqyeevy (Qj=a7d),.uns Q)
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- QS (Ql) %y (Qj=q3"j+l) ’ ""QN)

aQ ) .
- — (q¥ - ¢%i*h
an
3Q¢ (%)
= r.Q. —
JJ an(xj)

Max {Agfj(Xj)}

Fj(xj) = — .
r;Q; {3 (X)/23Q; (x;)}

The G-A-G method is simple, fast, and eaéily programmable. It can
be applied to a series or a general system with multiple nonlinear
constraints. For a series system, the recursive representation of the

selection factor simplifies the computation.
The Extended Nakagawa and Nakashima Method (N-N)

Originally, the N-N method [11] was based on the series system.

The problem was formulated as

N
Max Rg =1 Rj(xj)
j=1

subject to

™M=

Sij(xj) S b; for all 1i.

j=1
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With the assumption of monotonically nondecreasing constraints, the

above problem can be transformed into

Ny
Max 4n Rg(X) = Z Z Afj(k)
j=1 k=1

subject to
N Xj
z z ASij (k) < b; for all i
j=1 k=1
Af; (k) 2 0 for all j and k
Agij(k) 20 for all i, j and k.

A balancing coefficient, a, balances the weights between the
increment of system reliability and the resource consumption. The

sensitivity function is defined as

S;= Afj(x:+l)[ (1-a) « min {Axy} + a Ax-]
J J
keL+]

where

= mi C/ag: : (x:

Bx mzn {bl/AglJ(xJ + 1)},
A redundant component is then proposed to be added to the stage

having the largest S;. Fourteen balancing coefficients (0.0, 0.1, ...,

1.0, 1/0.9, 1/0.6, 1/0.3) are evaluated. The best solution is the

final solution.
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This method was later extended to the 'general system by redefining
Afj(Xj) = AQs(xj) [7]. According to Nakagawa and Miyazaki [10] and the
results of this Section, the N-N method is the most accurate heuristic
redundancy optimization method, but it requires the longest execution
time because of the repetitive computation of 14 balancing

coefficients.

The Kohda and Inoue Method (K-I)

The previous three methods improve system reliability by adding
redundancy one—by-one to the selected stage. The algorithm stops when
any constraint is violated. The K-I method [6] further examines the
solution by adding a redundancy to one stage and subtracting a
redundancy from another stage to determine whether the new solution is
feasible and better.

For every X*P(-j), the maximum S(kj) over {jlx*p(—j,+s) is

feasible} is obtained. Then the deviation,
’ . [ _ . ] *Pr_s
D({) = Ls(ky) - s(j) J|x"PC-1)

is calculated. If the maximum deviation, D(#), is greater than zero,
the system reliability can be improyed by adding one redundant unit to
stage £ and subtracting one from stage k,. If the constraint is not
monotonically nondecreasing, two redundancies are added to the stages
to see if the solution is feasible and better. This method serves as

an improved step to the solution obtained by any redundancy allocation

method.
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THE SEQUENTIAL SEARCH METHODS

Without considering redundancy, the reliability allocation problem

can be formulated as
Max Rg(R)
subject to

N
Zgi;R) <b; for all i
i=1

or
Min Cg(R)
subject to

Rg(R) 2R
ve

r: 2 r:

j i for all j

where

e %

R and r; are given lower bounds.

This problem, a typical nonlinear programming problem, restricts
the decision variables, R = (rl, RN rN), between 0 and 1. To solve
such a problem, numerous search techniques can be utilized. There are
two basic types of search techniques: the simultaneous search and the

sequential search. The simultaneous search, also called the exhaustive
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search, evaluates the function value at predetermined points. The
results of an experiment are not used to.determine the next experiment.
On the other hand, the results of a sequential search provide
information for the next experiment.

The exhaustive search method cannot be applied to a problem of
moderate or large size. The use of the sequential search technique to
handle the real part of the mixed-integer reliability optimization
problem was first presented by Tillman et al. [13] and later by Gopal
et al. [4]. These two sequential search methods are simple and
efficient compared to the other search methods. Neither requires a
differentiable objective function. They can be easily understood and
implemented without any special mathematical background. Two search

techniques proposed are summarized below.
The Hooke and Jeeves Pattern Search Method (H-I)

The H-J pattern search [5] begins with an arbitrarily selected
base point. The search is composed of the exploratory move and the
pattern move. An exploratory move finds a new pattern (direction) by
adding and subtracting a step size to the current base point. A
pattern move actually makes an improvement toward the optimal solution
by adding two times the difference between the previous base point and
the current base point. For each move (change in the decision
variables), the function value is evaluated and compared with the

current optimal solution., If a move gives a better solution, the base
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point and current optimal solution are updated. Otherwise, the step
size is reduced by half. The search ends when the step size is smaller
than a predetermined minimum step size and the functional value sees a

limited improvement. The algorithm is shown in Fig. 2.3.
The Gopal, Aggarwal, and Gupta Search Method (G-A-G)

The G-A-G search method simplifies the search procedure by simply
adding a step size to the component reliability. A sensitivity
function was introduced to determine the order of adding a step size to

the component reliability. The sensitivity fﬁnction is defined as
$;(rj,X) = [RS(rl,'“.fj*h,"-,rN; X - Rg(R,X1] |
/[Cj(rj"‘h) - CJ(!‘J)]

The algorithm is shown in Fig. 2.4, This method, although very simple

and efficient, does not yield satisfactory solutions.
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FIGURE 2.3.

Combination of H-J sgarch and heuristic methods
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FIGURE 2.4. Combination of G-A-G search and heuristic methods
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FORMULATION OF THE RELIABILITY-REDUNDANCY ALLOCATION PROBLEM

In the design stage, it must be decided whether or not to use
highly reliable components or to add redundancies. For a system such
as a space shuttle, a system reliability near 1.0 is desirable. VYet to
minimize the shuttle weight, adding redundancy would be a real burden.
On the other hand, in an ordinary industrial product, adding
redundancies can be a good solution, since the cost of a reliable
component is at least an exponential function of its reliability
measure. The following mixed—integer reliability optimization problem
is formulated to allow flexibility in the decision process for the

systems falling between these two extremes.
Max Ry (R, X)
subject to

N
.Z Sij(rjvxj) < b; for all i.
i=1
R=(ry, .., ry) and X = (%3, ..., xy) are to be determined for
given gij's and b;'s,
The system studied is the bridge system shown in Fig. 2.1.

Its system reliability can be evaluated as follows.
Rg = Prisystem is good | component 5 is good}

x Pr{component 5 is good}
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+ Pr{system is good | component 5 is failed}
x Pr{component 5 is failed}
= R1R2 + R3R4 + R1R4R5 + R2R3R5 - R1R2R3R4 —~ R1R2R3R5
- RiR2R4R5 - R1R3R4R5 - R2R3R4R5 + 2R1R2R3R4R5.

The three nonlinear constraint functions from [13] are

g1(X) =ZP.xt-P=<0
. 1]
j=1
3 8
g2X,R) = £ aj(-t/fn rj) J(xj+exp(xj/4)) -CcCs0
J'=1 .
5
g3(X) = Z Wjxjexp(xj/4) - W =0
j=1

xj's 2 1 are integers.
0<rj's <1,

The first constraint models the combination of volume and weight,
which is a function of the number of redundancies. The second
constraint models the cost, which is a function of the number of
redundancies as well as the component reliability. The third
constraint models the weight, which is a function of the number of
redundancies only. The reliability function and cost function of the

second constraint are



33

r:

j= exp(‘ljt)

and
Cite) = a; (W/ADPT = a(-t/an )P
J ) J J J J

where kj is the failure rate, t is the time, and a; and Bj are cost

coefficients.



34

COMPUTATION AND RESULTS

One-hundred sets of constraint coefficients of specified ranges as
listed in Table 2.1 are randomly generated from uniform distribution.

Each set of coefficients represents a test problem.

TABLE 2.1. Ranges for coefficients of constraint functions

Coefficient Range Coefficient Value Coefficient Value
P; 1.0 - 10.0 P 100 t 1000

W; 5.0 - 15.0 W 200 8; 1.5
a.jx105 0.3 - 9.0 o 200 - -

where j=1,2,3,4,5.

In order to investigate the effects of combining or not combining
with the search method, the problems were first tested on the four
heuristic redundancy methods with constant component reliability. Two
component reliability levels, 0.7 and 0.85, were tested. The same
problems were then tested by combining two sequential search methods
with four heuristic redundancy methods using the algorithm outlined in
Figs. 2.3 and 2.4. The extended N-N method used three values (0.5,
1.5, and 2.5) instead of 14 values to reduce execution time. The K-I
method utilized Aggarwal's redundancy method [1] to find a solution

before the perturbation method is applied. Since the initial base
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point may affect the final answer, two initial base points, 0.5 and 0.7
were tested on each combination,
The results are compared in the following criteria:
1. Optimality rate (0): the number of times the method yields
the highest system reliability.
2. Maximum error rate (M): the number of times the method

yields the lowest system reliability.

100 i i
Average absolute error (A): Z |Rg! - Rg71[/100
j=1 '

where R;J is the system reliability of method i at the jth

run and R?J = max{ R;J }
1

100 | .. : ol
4. Average relative error (R): Z |[R3! - R:J [/ (100xR.T).
j=1

5. Average execution time (T): average CPU time of 100 runs.

Table 2.2 summarizes the effects on the heuristic redundancy
methods by relaxing the assumption of constant reliability. Data in
each row of Table 2.2 are based on that particular experiment. In the
case of constant component reliability, significant differences exist
among the heuristic redundancy methods. The solution depends heavily
upon the type of algorithm used. The quality of the result is
proportional to the execution time required to obtain the answer. The

simulation results are consistent over all criteria.
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Having combined sequential search methods, the relative
performance changed considerably. Using the G-A-G search method, G-A-
G/G-A-G is the best for optimality rate. G-A-G/N-N is the best for
maximum error rate, while G-A-G/K-I is the best for average absolute
error. Using the H-J search method, the differences among G-A-G, N-N,
and K-I heuristic redundancy methods are leveled out. Except for the
fact that K-I has a higher maximum error rate, the results are quite
consistent.

In Table 2.3, the results of eight combinations are compared.
Data at each entry of Table 2.3 aré the results compared over eight
combinations of the method. Comparison of all criteria and all
heuristic redundancy methods shows that the H-J search method is
significantly better than the G-A-G search method. The differences
among H-J/G-A-G, H-J/N-N, and H-J/K-I are not significant. It can be
concluded that the search method is the dominant factor in solving this
type of problems. The relative importance of the heuristic redundancy
methods are leveled out when combined with the search methods.

The algorithms were coded in Fortran 77 and run on an IBM PC/AT
with a mathematical co—processor. The computation was done in double
precision to avoid round-off errors. Because of the structure of the
system, a low component reliability will yield a high system
reliability. Therefore, the absolute errors are small and the relative

errors are closed to the corresponding absolute errors.



TABLE 2.2. Simulation results I

Heuristic Method Base Point 1 (0.5)
or ¢, = 0.7
i
Search Method S-v G-A-G N=N K-1
¥

Constant rj's 0 36 53 68 55
G-A-G 0 6 50 40 36
H-J 0 8 35 31 43
Constant rj's Ht 55 43 31 45
G-A-G M 76 11 9 12
H-J M 72 7 7 17
Constant rj's %) A; 0.416 0.3)1 0.101 0.532
G-A-G (107°) A 45 1 12 10
H-J (107) A 86 15 17 22

Constant rj's (sec) T§ 0.213 0.844 2.06 1.15
G-A-G (sec) T 30.8 123.3 288.5 166.1

H=J (sec) T 58.1 228.2 501.5 298.1

0 = optimality rate.

M = maximum error rate.

—~—+
>
H}

average absolute error.

T = execution time.
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Base Point 2 (0.7)

or rj = 0.85 Average

S=-v G-A-G N-N K-1 S-v G-A-G N-N K-1
42 57 71 70 39 35 69.5 62.5
8 52 44 39 7 51 42 37.5
10 36 41 31 9 35.5 36 37
61 43 33 38 58 43 32 41.5
76 11 8 15 76 11 8.5 13.5
61 11 14 17 62.5 9 10.5 17
0.1 0.086 0.016 0.05 - -- - --
45 12 12 9 45 11.5 12 9.5
50 19 21 17 68 17 19 19.5
0.204 0.82 1.94 1.20 0.208 0.832 2.0 1.18
20.3 82.2 188.8 112 25.6 102.7 238.6 139
53.9 199.6 446.4 273.6 56 214 474 285.9




TABLE 2.3. Simulation results II

Heuristic Method Base Point 1 (0.5)

Search Method S-v G-A-G N=N K=1

G-A-G 0 2 10 7 6

H-J 0 5 30 28 37

G-A-G TLE 9 4 6

H-J M 30 4 5 8
-5 ¥ .

G-A-G (10 ) A 62 27 29 26

H-J (1073) A 87 17 19 23

*

0 = optimality rate.

f" = maximum error rate,

fa

average absolute error.




38 b

Base Point 2 (0.7)

Average

S-v G-A-G N-N K-1 S-v G-A-G N-N K-1
0 12 5 7 1 11 6 6.5
17 32 36 24 6 31 32 30.5
43 7 4 9 42 8 "4 7.5

25 8 6 6 27.5 6 5.5 7

61 27 27 24 61.5 27 28 25
52 21 23 18 68.5 19 22 20.1
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SECTION III. RELIABILITY OPTIMIZATION WITH THE LAGRANGE MULTIPLIER AND

BRANCH-AND-BOUND TECHNIQUES
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INTRODUCTION

In the past two decades, numerous reliability optimization
techniques have been proposed [12]. These techniques can be classified
as the exact method and the iterative method. The exact method obtains
the solution analytically. In general, it involves more mathematics
and generate a more accurate solution. The Lagrange multiplier with
Kuhn-Tucker conditions [8,9] and dynamic programming [12] are examples
of the exact method. The iterative method obtains the solution by
repeating the algorithm or enumerating the solutions. It does not
require an extensive mathematical background. The branch—and~bound
technique [10] and the heuristic method [13] are exampies of the
iterative method.

In most reliability optimization problems, the decision variables
are the number of redundancies that are integer (integer programming or
redundancy allocation problems), the component reliabilities that are
real numbers (real programming or reliability allocation problems), or
a combination of both (mixed-integer programming or reliability-
redundancy allocation problems). 1In the methods that are based on
differentiation, the decision variables must be continuous. Earlier
.studies treat the number of redundancies as real variables [8,9]. The
real number answer is rounded off and the neighboring integer solutions
are evaluated. The best feasible solution among the trials is taken as
the final solution. This method works well if the problem is simple

and the constraints are linear [9]. As the problem gets complicated,
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the rounding off and trial-and-error procedure become inefficient and
inaccurate. Furthermore, this approach provides no theoretical
reasoning and has difficulties in extending the integer programming
problem to the mixed-integer programming problem, which is frequently
needed for reliability optimization.

Other methods treat the redundancy allocation problem as an
integer allocation process from the very beginning. Heuristics are the
popular techniques [12] but offer the users little feeling about
optimality. In addition, it is both inefficient and difficult to
justify the methods to solve the reliability-rédundancy allocation
problem. The combination method studied in Section II provides one of
a few ways to optimize the reliability-redunﬁancy allocation problem.
Unfortunately, it suffers numerical instability and low computational
efficiency.

A method combining the Lagrange multiplier technique with the
branch—and-bound technique is proposed. The Lagrange multiplier
technique quickly reaches an exact real number solution that is close
to the optimal solution. Next, the branch-and~bound method is used to
obtain the integer solution. This proposed method can solve both the
redundancy allocation problem and the reliability-redundancy problem.

When dealing witlh the latter problem, only branching and bounding the

integer variable is necessary.



44

THE LAGRANGE MULTIPLIER AND KUHN-TUCKER CONDITIONS

Notation:
[Xj] integer part of x;
A; the ith Lagrange multiplier
L Lagrange multiplier function
A A1y eeey AW
gi the ith constraint.

The constrained reliability optimization'problem can be formulated

as follows:
Max Rg(X,R)
subject to
g; X,R) < b; i=l,...,M. 3.1)

The Lagrange multiplier technique transforms the constrained
optimization problem into the unconstrained problem by introducing the
Lagrange multipliers, A;'s. The unconstrained optimization problem,

called the Lagrangian, becomes

M
Max L(X,R,X) = Rs(x,ﬁ) - I Ri[gi(x,ﬁ) - b;] (3.2)

1=
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According to the Kuhn-Tucker conditions [7], the necessary

conditions for a maximum to exist are

3L
—_ =0 (3.3
Brj
oL
— =0 i=l,000,N 3.4
EXj
oL o
Ai— =\ [gi X,R) - bi] = Q - (3.5)
oN;
Ri 2 0 (3.6)
gi-biSO i=1,..., M 3.7

Equations (3.3), (3.4), and t3.5) form a system of 2N + M
simultaneous equations. The solutions to these simultaneous equations
subject to Eqs. (3.6) and (3.7) are extreme points in Eq. (3.1).

The nonlinear simultaneous equations can be solved by Newton's

method, which expresses the multi-variable root-finding problem as

follows [2].

Ky = X - VIED L F@&y) (3.8)
where

Xy X at the kth iteration

v a positive scalar

F(R) (E1®), ooy Eg@E)T



46
JXy) Jacobian matrix of F(Xy).

The scalar, V, controls the rate of convergence. If V is greater
than one, the convergence is faster. If V is greater than zero and
less than one, the convergence is slower. For the reliability
optimization problem, the scalar, V, is taken to be less than one,
since the upper and lower bounds of Xj and rj are not imposed on the
constraints. This conservative measures avoids x; and rj converging in
an infeasible region.

Newton's method requires the evaluation of partial derivatives of
the simultaneous equations. In some applications, the exact evaluation
of the partial derivatives is inconvenient or even impossible. This
difficulty can be overcome by using a finite difference approximation
to the partial derivative [2], i.e.,

af; (X £, X+ ejh) - £, (0 (3.9

=

ox. h
J

where h is a small value and Ej is a vector with one at the jth element

and zero elsewhere. Other methods such as the secant approximation to
the derivative in Newton's method [14], i.e.,

E®) - £(Fyop)
£ ®) = — K (3.10)

Ag = Xg-1

and the quasi~Newton method [2] are popular ways of solving nonlinear

simultaneous equations without having to.evaluate partial derivatives
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explicitly. Subroutines for solving nonlinear simultaneous equations
are available in many mathematical libraries. Examples are ZSCNT and
ZSPOW of IMSL [6], and ZONE of PORT mathematical library [11]. These
subroutines are accurate, convenient, and efficient. However, they may
not converge, and the sol;tion may be infeasible. In this study, the

ZSCNT subroutine was used to verify solutions obtained by Newton's

method.
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THE BRANCH-AND-BOUND TECHNIQUE IN INTEGER PROGRAMMING

The branch-and-bound technique of integer programming for

reliability optimization is stated as follows [3]:

1.

Solve the problem as if all the variables were real numbers.
This solution is the upper bound (for maximization problem)
of the integer programming problem.

Choose one variable at a time that has a noninteger value,
say Xj, and branch that variable to the next higher integer
value for one problem and to the next lower integer value
for the other. The real value solution of the jth variable
can be expressed as x; = [xj] + x?, yhere [xj] is the
infeger part of X; and 0 < x? < 1, The lower and upper
bound constraints of the two mutually exclusive problems are
X 2 [xj] *+ 1 and x; S [xj], respectively. Add these two
constraints to both branched problems (called the process of
the jth branch-and-bound). Solve both problems by the
Lagrange multiplier method. Now the jth variable becomes an
integer in either branch.

Fix the integer of X; for the following steps of branch-and-
bound. Select the branch that results in a higher system
reliability. Then repeat step 2 using another variable xy #
for each of the new §roblems until all variables becomes

X

integers.
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4, Stop branching the problem if the solution is worse th;n the
current best integer solution. Stop the iteration when all
the desired integer variables are obtained.

In step 2, there are many criteria for selecting the variable for
branching [4]. This paper selects the variable X; that minimizes
min(x?, 1-x;).

These steps can be directly applied to the mixed—integer
programming problem. For mixed-integer programming problem, only the
integer variables need to be enumerated by the branch—and-bound
procedure., The real variables are free of restriction after each step
of the branch-and-bound technique. Then by using the Lagrange
multiplier technique, their new optimal values are obtained. Stop the
branch-and-bound process whenever all the integer variables find

integer values,
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NUMERICAL EXAMPLES

Example 1

A four-stage series system with two linear constraints is
formulated as a pure integer programming problem., The decision
variables, X = (x1, x3, X3, X4), are the number of redundancies at each

stage. The problem is formulated as

4

— = X1
Max R (R,X) =1 [1—(1—rj) -']
j=1
subject to
4
z Cij Xj s bg i1 =1,2 3.11)
j=1

x:'s 2 1 are integers.

Using the data given in Table 3.1, the real solution, X =
(5.11672, 6.30536, 5.23536, 3.90151), was obtained using the Lagrange
multiplier method and the Kuhn-Tucker conditions proposed by Misra [9].
By rounding the solution to the nearest integer, the'solution becomes
(5, 6, 5, 4). This paper suggests that the real solution be further
‘elaborated by the branch-and-bound technique. As shown in Fig., 3.1,
the final answer after the branch-and-bound process is also (5, 6, 5,

4), which is globally optimal. Newton's method was programmed in
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Fortran and run on the NAS 9160. It took three seconds of CPU time to

solve the problem. Even if both Misra's method [9] and this method

draw the same conclusion about the decision variables, this method

provides a logical reasoning in obtaining the solution.

TABLE 3.1, Data for example 1

Stage, j 1 2 3 4
r; 0.80 0.70 - 0.75 0.85
1 1.2 2.3 3.4 4.5
€2; 5 4 8 7
by = 56
by = 120

Example 2

A five-stage series system with three nonlinear constraints is

formulated as a mixed~integer programming problem. Both the number of

redundancies, Xi, and the component reliability, r;, are to be

determined. The problem from Ref. [12] is as follows:

Max R _(R,X) =

subject to

i

[~ Y,

1

[1-(1—rj)xj]



= 5.11672
X = 6.30536
X3 = 5.23553
3.90151
0.997917

>¢
+
n

= 5.18914
6.16694

>
-
|

5.23537
= 6.94276

= 5.63151 X3 = 5.17326
3.00000 X4 = 4.00000
0.995768 ) Rg = 0.997895

p = 5.09315 X, = 4.56563

X2 = 6.00000 X, = 7.00000

5.31038
4.00000
0.997856

X3 = 4.82978
%4 = 4.00000
Rs = 0.997397

= 6.00000
%2 = 6.00000
= 4.75000
= 4.00000
: = 0.997322

= 5.00000
6.00000
5.31342
400000
0.997815

<5

X3

= 5.00000 = 5.00000 .

X5 = 6.00000 6.00000
X3 = 5.00000 X3 = 6.00000
Xy = 4.00000 X, = 4.00000

INFEASIBLE!!

0.939747
(RS = 0.9982017)

FIGURE 3.1. Branch—-and-bound of example 1

[4]
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— 5 2
gl(X) =2 ij- -P =<0
j=1 7

5

g2(&,R) = I aj (-t/in rj)aj (x;*exp(x;/4)) - C

i=1

5
g3 (X) =j§1ijjexp(xJ'/4) -W<s<0

0 < rj's <1

xj's 2 1 are integers.

(3.12)

By taking the logarithm to the objective function, .the Lagrangian

can be written as

N w 3
LEARD = 2 a0 [1-0-rp™ ] - £ agg; G0,

j=1 i=1

The Kuhn-Tucker conditions to the problem are

< 1+ GXP(Xj/4)/4] - Zklxjpj ~

R3Wjexp(Xj/4)(1 + Xj/4) =0

3% + Azaj( -t )ﬁj'ﬁj

(3.13)

(3.14)
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o(xj+exp(x_i/4))/(rj£n l‘j) =0 i=1,2,...,5

—_— )\igi (X,E) = ()

aL
aA;
KiZO

i=1,2,3.

(3.15)

(3.16)

(3.17)

(3.18)

Using the data given in Table 3.2, the system of simultaneous

equations in Eqs. (3.14), (3.15), and (3.16) was solved by Newton's

method.

After the real number solution was oﬁtained, the branch—and-

bound technique was used to find the integer variables while leaving

the other variables free of restriction, except the previously

investigated integer variables,

The enumeration tree is shown in Fig.

3.2, Newton's method was programmed in Fortran and run on the NAS

9160. It took 16.2 seconds of CPU time to solve the problem.
TABLE 3.2, Data for example 2

j a; P; W; P o W

1 2.33x1073 1 7

2 1.45%1079 2 8

3 5,41x1076 3 8 110 175 200

4 8.05x1073 4 6

5 1.95x1079 2 9

8; = 1.5, j=1,2,3,4,5 t = 1000




Xy = 2.79286 Ry = 0.79975
X2 = 2.55088 R2 = 0.83724
X3 = 2.2735 R4 = 0.88927
X4 = 3.34340 Ry = 0.69282
Xg = 2.56027 Rg = 0.82444
Rg = 0.94270
Xl <2 Xl >3
.
Xy = 2.00000 Ry = 0.B5542 X, = 3.00000 R; = 0.78509
Xp = 2.71772 R, = 0.82444 X, = 2.51999 R, = 0.84082
X3 = 2.40347 Ry = 0.87816 X3 = 2.22435 R, = 0.89204
X4 = 3.48621 R, = 0.67503 Xq = 3.25305 Ry = 0.69776
Xg = 2.73971 Rg = 0.80925 Xg = 2.49529 Rg = 0.82819
R, = 0.93502 R, = 0.94187
X5 <2 ” X5 > 3 Xy <2 ILX323
_ 1
| Xj = 2.00000 R, = 0.85846 X, = 2.00000 R, = 0.85471 X3 = 3.00000 R, = 0.79109 Xy = 3.00000 R, = 0.78134
Xy = 2.91143 R, = 0.80827 X, = 2.58754 R, = 0.83109 X2 = 2.50039 R, = 0.83915 X, = 2.21778 R, = 0.85786
X3 = 2.53174 R; = 0.87499 X3 = 2.30569 Ry = 0.88464 X3 = 2.00000 R; = 0.90631 X5 = 3.00000 Ry = 0.84117
X4 =3.63022 R, = 0.67476 g = 3.38744 R, = 0.68407 X4 = 3.30064 R, = 0.68951 Xq = 3.01639 R, = 0.71265
Xg = 2.00000 Rg = 0.83010 Xg = 3.00000 Ry = 0.78901 Xg = 2.53602 Ry = 0.82250 X; = 2.24330 Rg = 0.84442
Rg = 0.92312 R, = 0.93413 R, = 0.93966 Rg = 0.93533

FIGURE 3.2.

o o

6

Branch—and-bound of example 2

19
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Xy €
)
X] = 2.00000 R, = 0.85417 = 2.00000 R, = 0.85194
X, = 2.72019 Ry = 0.82119 X, = 2.03072 Rp = 0.86815
Xy = 2.00000 Ry = 0.90324 X3 = 3.00000 Ry = 0.83828
X4 = 3.50171 Ry = 0.67501 Xq = 3.16773 R, = 0.69605
Xg = 3.00000 Rg = 0.78840 Xg = 3.00000 Rg = 0.78587
Rg = 0.932916 R = 0.926811
€2 || % =3 B
¥
2.00000 0.82027 %) =2.00000 R = 0.85373
Xz = 2.00000 RZ = 0.87484 x2 = 3.00000 R2 = 0.80118
X3 = 2.00000 R, = 0.89493 Xy = 2.00000 Ry = 0.90294
Xg = 3.42049 R, = 0.68069 Xy = 3.19337 R, = 0.69686
Xg = 3.00000 Ry = 0.80171 Xg = 3.00000 R = 0.78789
Ry = 0.91585 Rg = 0.93152
Xy <3 l | Xg = 4
Y .____________i____________]
X; =2.00000 R, = 0.85253 X, = 2.00000 l
X, = 3.00000 R, = 0.79991 X, = 3.00000
Xy = 2.00000 Ry = 0.90214 X3 = 2.00000 INFEASIBLE
X, = 3.00000 R, = 0.70970 X4 = 4.00000 I
Xg = 3.00000 Rg = 0.78653 Xg = 3.00000
R, = 0.92849
— ] e——

FIGURE 3.2 (Continued)




l‘ <3 X‘ <3
f (] i }
X, + 3.00000 R, = 0.79063 I, « 3.00000 R, = 0.80246 ¥, = 3.00000 R, = 0.77990 X = 3.00000 &) = 0.76938
X, = 2.62608 RZ = 00.82924 ;2 - 2.03647 nz = 0.84268 12 = 2.22190 Rz = 0.82947 Xz = 1.57185 RZ = 0.89525
X, * 2.00000 Ry = 0.89225 X = 2.00000 R, = 0.90026 Xy = 3.00000 Ry = 0.84793 X3 = 3.00000 Ry > 0.83241
X, = 3.00000 R, =0.71938 X, * 4.00000 Ry » 0.67048 X, = 3.00000 R, = 0.69838 Xy = 4.00000 R, = 0.62674
X - 2.63864 Rg = 0.81619 X = 2.07129 R = 0.82921 Xg = 2.2509 Ry = 0.81487 Xg = L.56711 Rg = 0.88528
R, = 0.93758 R, * 0.923%88 R, = 0.919002 R, = 0.90476
*o<? I LR
i }
X, = 3.00000 R = 0.77999 X; = 3.00000 R; = 0.80918
X, = 3.35515 R, = 0.77208 Xy * 2.21212 g, = 0.845%9
X, = 2.00000 R, = 0.90323 X3 = 2.00000 Ry = 0.89599
3 3
X, = 3.00000 R, = 0.71217 Xq = 3.00000 R, = 0.70687
4 4
X = 2.00000 Ry s 0.85123 Xg = 3.00000 gg = 0.79336
Rg = 0.93219 R = 0.93560
12§3 ll 123‘ '252 ll 1233
} { )
X, = 3.00000 R, s 0.82648
. . X, = 3.00000 1 1
%y = 3.00000 R, = 0.77960 ‘1 « 00000 X, = 2.00000 Ry = 0.87259
L 3 . s 4.
X, = 3.00000 R, = 0.80065 2 X3 = 2.00000 Ry = 0.87853 INFEASIBLE
l; - 2.00000 R; - 0.50227 Xy 2.00000 INFEASISLE L 3.00000 R‘ s (1.68725
. . - X. = 3.00000 Xg = 3.00000 Rg = 0.77881 .
Xy © 3.00000 Ry = 0.71044 . 2 00000 Ry = 0.92476
xg = 2.00000 Rg = 0.85947 Xg = 2
-«
R = 0.92975
FIGURE 3.2 (Continued)

LS
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This same problem was solved using a combination of the sequential
search and the heuristic redundancy allocation methods investigated in
Section II. The results, summarized in Table 3.3, show that the

proposed method is superior to the combination of the two iterative

methods, A higher system reliability is obtained with less resource

consumed, Experience show that this mixed~integer programming problem

has many local optimums. The search technique discussed in Section II
has the drawback of being trapped by a local optimum and not being able

to get out of it. The proposed method overcomes this drawback and has
been shown to be quite effective, especially éor the mixed-integer
programming problem,

TABLE 3.3. Comparison of two methods

Lagrange Multiplier

and the Branch-and-
Bound Method

Hooke and Jeeves Pattern
Search and Heuristic Method

Z (31 3, 29 3: 2) (39 3, 29 2v 3)

R (0.77960, (0.7582,
0.80065, 0.8000,
0.90227, 0.9000,
0.71044, 0.8000,
0.85947) 0.7500)

R 0.92975 0.91494

g1 27 28

82 0.00001 0.033727
10.57248 1.4118

€3
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CONCLUSION

The combination of the Lagrange multiplier and the branch-and-
bound techniques takes advantage of the exact method and the
enumerative method. The analytical method quickly reaches a solution
that is close to optimum, and the enumerative method finds the integer
solution. Since a good approximation is obtained by the former method,
it does not take many iterations for the latter one to reach the
optimal solution., In addition, the branch-and-bound method generates
many sets of solutions. The competitive alternatives provide
management with different options and flexibility. This general method
can be applied to any twice differentiable constrained optimization
problem, Nonlinear root-finding subroutines and numerical

approximation ¢an be used to eliminate the need of evaluating partial

derivatives.
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SECTION IV. A REVIEW AND CLASSIFICATION OF SOFTWARE RELIABILITY MODELS
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INTRODUCTION

Since the invention of the computer, computer software has
gradually become an important part of a system, In the 1970s, the cost
of software has surpassed the cost of hardware as being the major cost
of a system [209]. 1In addition to the cost of developing a software,
the penalty costs of software failures are even more significant. As
missions accomplished by human beings are becoming more and more
complex, for example, the air traffic control system, nuclear power
plant control systems, the space program, and military systems, the
failure of software usually involves very high costs, human lives, and
a social impact. Therefore, how to measure and predict the reliability
of a software becomes an important issue.

In the past 15 years, more than 300 papers have been published in
the areas of software reliability modeling, software reliability
characteristics, and software reliability model validation. Since
software is an interdisciplinary science, software reliability models
are also developed from different perspectives of a software a;d
different applications of the model. In order to pave the way for the
future development and evaluation of highly reliability software and
systems involving software and hardware, a detailed review of the
existing software reliability models and the assumptions behind those
models is of value. In this Seétion, a classification scheme for
software reliability models is proposed. Software reliability models
along with the characteristics of software and factors affecting

software reliability are discussed.
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CHARACTERISTICS OF SOFTWARE RELIABILITY MODELS

In ﬁardware reliability, the mechanism of failure occurrence is
treated as a black box. 1It's the failure process that is of interest
to the reliability engineers. The emphasis is on the analysis of
failure data and the design of experiment. In software reliability,
one is interested in the failure mechanism. Most software reliability
models are analytical models derived from assumptions of how failures
occur. The emphasis is on the model's assumptions and the
interpretation of parameters.

In order to develop a useful software reliability model and to
make sound judgments when using the models, an in—depth understanding
of how software is'produced, how erroré are introduced, how software is
tested, how errors occur, the types of errors, and the environmental
factors can help us in justifying the reasonableness of the
assumptions, the usefulness of the model, and the applicability of the
model under given user environment.

General description of software and software reliability, software
life cycle, the bug-counting concept, hardware reliability versus
software reliability, time index, error analysis, error size, user
environment, and flowgraph representation of a program are discussed

below.
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General Description of Software and Software Reliability

Similar to the definition of hardware reliability, time-domain
software reliability is defined as the probability of failure-free
operation of a software for a specified period of time under specified
conditions [209]. Software is a collection of instructions or
statements of computer languages. It is also called a computer program
or simply a program, Upon execution of a program, an input state is
translated into an output state. Hence, a program can be regarded as a
function mapping the input space to the output space (P: I + 0), where
the input space is the set of all input states and the output space is
the set of all output states. An input state can be defined as a
combination of input variables or a typical transaction.to the program.

Any program is designed to performed some specified functions.
When the actual output deviates from the expected oulbput, a '"failure"
occurs. It's worth noting that the definition of failure differs from
application to application and should be clearly defined in the
specifications. For instance, a response time of 30 seconds could be a
serious failure for air traffic control system, but acceptable for an
air line reservation system. A "fault'" is an incorrect logic,
incorrect instructions, or inadequate instructions by éxecuting it will
cause a failure. In other words, faults are the sources of Ffailures
and failures are the realization of faults. Whenever a failure occurs,
there must be a corresponding fault in the program, but the existence
of faults may not cause the program to fail. A program will never fail

as long as the faulty statements are not executed.
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It should be noted that "error" and '"bug'" are loosely used by many
authors to represent fault and sometimes failure. Failure and fault
customarily defined above [137] will be used through this section.

Error and bug will also be used when the distinction between the two is

not critical,
Bug—Counting Concept

The bug-counting model assumes that conceptually there is a finite
number of faults in the program. Given that faults can be counted as
an integer number, bug-counting models estimate the number of initial
faults at the beginning of the debugging phase and the number of
remaining faults during or at the end of the debugging phase. Bug-
counting models use per-fault failure rate as the basic unit of failure
occurrence. Depending upon the type of models, the failure rate of
each fault is either assumed to be a constant, a function of debugging
time, or a random variable from a distribution. Once the per-fault
failure rate is determined, the program failure rate is computed by
multiplying the number of faults remaining in the program by the
failure rate of each fault.

During the debugging phase, the number of remaining faults
changes. One way of modeling this failure process is to represent the
number of remaining faults as a stochastic counting process,

Similarly, the number of failures experienced can also be denoted as a

stochastic counting process. By assuming perfect debugging, i.e., a
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fault is removed with certainty whenever a failure occurs, the number
of remaining faults is a nonincreasing function of debugging time.
With imperfect debugging assumption, i.e., faults may be removed,
introduced, or no change at each debugging, the number of remaining
faults may increase or decrease. This bug-counting process can be
represented by the binomial model, Poisson model, compound Poisson

process, Markov process, and doubly stochastic process.
Error Size

Error size of a fault is defined as the probability that an input
state randomly selected from the input space will execute that fault

and result in a failure [56]. It can be expressed in the following

form,
1 N
S; = - ‘Z e
N j=1
where
1 if input state j executes fault i and fails
eij =
0 otherwise
S; error size of the ith fault
N number of input states.

One hypothesis about error says that a large sized fault is easier

to detect and will be detected earlier. A small sized fault is more
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subtle and will be detected later. Although this hypothesis is hard to
validate, the idea of nonidentical size of error conforms with the
assumption of nonconstant per-fault failure rate postulated by many

software reliability models.
User Environment

The reliability of a software is subject to the user environment.
The failure rate of a Fortran compiler for instruction is expected to
be lower than for sophisticated applications. Operational profile and
system load are two environmental factors discussed below.

Operational profile is the distribution of input state execution;
Depending upon the application, an input state could mean a typical
transaction of daily operations, a partition of input space, or a
combination of input variables. Since the relationship of input,
fault, and failure is deterministic, how inputs are selected determines
how failures occur. 1In other words, if the assumption says that faults
are detected equal likely, it implies that input states are selected
randomly. In testing, the test cases should be generated randomly
according to the operational profile, so that the testing strategy will
conform with the assumptions of the model. In the operational phase,
some input states are executed more frequently than the others. This
must be considered when evaluating the reliability of the software.

The system load consideration is derived from the phenomenon that

a software is more likely to fail at peak hours than at the normal
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operational hours [25,94]. 1In other words, the failure rate is not
only a function of time (CPU time or operational time), but also a
function of system load. This observation leads to a correction factor

added to the software reliability model.
Time Index

In hardware, materials deteriorate over time. Hence, calendar
time is a widely accepted index for reliability function. 1In software,
failures will never happen if the program is not used. In the context
of software reliability, "time" is more approp;iately interpreted as
the "stress'" placed on or "amount of work" performed by the software.
The following '"time units" have been suggested as indices of the

software reliability function.
Execution time - CPU time; time when the CPU is busy.
Operational time - Time the software is in use. This is usually
referred to 8 working hours per day.
Calendar time — This index is used for software running 24 hours a
day.
Run - A run is a job submitted to the CPU.
Instruction - Number of instructions executed.

Path - A path is the execution sequence of an input.
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Models based on execution time, operational.time, calendar time,
and instruction executed belong to the time-domain model. Models based
on run and path belong to the input-domain model.

Although it may seem that software reliability models do not have
a unified index, the unification can be achieved through unit
conversion. For example, Musa et al. [155] have proposed methods of
converting their execution time model to the calendar time model.
Input-domain model can also be converted into time-domain model through

a factor of "number of runs or paths executed per unit time."
Software Life Cycle

Software life cycle is normally divided into the requirement and
specification phase, design phase, coding phase, testing phase, and
operational and maintenance phase. The design phase may include a
preliminary design and a detailed design. Testing phase may include
module testing, integration testing, and field testing. The
maintenance phase may include one or more subcycles, each having all
the phases in the development stage. This classification is based on
the functional point of view rather than a strict time sequence. In
reality, software life cycle phases overlap each other.

The fa;tors governing the failures, the types of models applicable
for reliability assessment, the purpose of reliability assessment, and

the data available for parameter estimation vary from phase to phase

(155,178] . In the early phase of software life cycle, a predictive
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model is needed because no failure data are available. This type of
model predicts the number of errors in the program before testing. In
the testing phase, the reliability of the software improves through
debugging. A reliability growth model is needed to estimate the
current reliability level, and the time and resources required to
achieve the objective reliability level. During this phase,
reliability estimation is based on the analysis of failure data. After
the release of a software, addition of new modules, removal of old
modules, removal of detected errors, mixture of new code with
previously written code, change of user environment, change of
hardware, and management involvement have to be considered in the
evaluation of software reliability. During this phase, an evolution
model is needed.

In addition to the relationship between software reliability model
and software life cycle, the study of the type and percentage of errors
introduced and removed within the software life cycle is also of

interest to software reliability engineers.
Graph Representation of a Program

A program can very well be repregsented by a directed graph where
decisions are the nodes, statements between two decisions is the arc,
and execution sequence is the direction of the arc. This
representation is also called the flowgraph of a program. Using

flowgraph representation, the execution sequences of a program can be
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traced through the paths of the flowgraph. In addition, the analysis
of control flow and data flow of a flowgraph set the ground for many
complexity metrics which, in turn, are used to estimate the number of
errors in a program.

Another view of the flowgraph treats a program as a reliability
network. Each node represents a module or a subroutine. As the
reliability of each module and the transition probabilities among the
modules are determined, the reliability of the program can be evaluated
by the techniques of reliability network [7,33]. Some other graph
properties like connectivity and reachability‘can also be applied to

represent software properties.
Software Reliability versus Hardware Reliability

Since the emergence of software reliability, reliability
theoreticians and practitioners have discussed the issue of software
reliability versus hardware reliability in terms of similarity,
differences, modeling techniques, etc. [85,217]. Because the basic
modeling techniques of software reliability are adapted from
reliability theory developed for hardware systems in the past 30 years,
a comparison of software reliability and hardware reliability can help
in the use of these theories and in the study of hardware~software
systems., Table 4.1 lists the differences and similarities between the

two.
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TABLE 4.1, Software reliability versus hardware reliability

Software Reliability

Hardware Reliability

Without considering program
evolution, failure rate is
statistically nonincreasing.

Failures never occur if the software
is not used.

Failure mechanism is studied.

CPU time and "run'" are two popular
indices for the reliability
function,

Most models are analytical models
derived from assumptions. Emphasis
is placed on the development of the
model, the interpretation of the
model assumptions, and the physical
meaning of the parameters.

Failures are caused by incorrect
logic, incorrect statements, or
incorrect input data. This is
similar to the design errors of
the complex hardware system.

Failures are reproducible because
the relationship between input state,
program, and output is deterministic,

Failure rate has a bathtub curve.
The burn—-in stage is similar to
the software debugging stage.

Material deterioration can cause
failures even though the system
is not used.

Failure mechanism is treated as
a black box.

Calendar time is a universally
accepted index for the reliability
function.

Failure data are fitted to some
distributions. The selection of
the underlying distribution is
based on the analysis of failure
data and experiences. Emphasis
is placed on the analysis of
failure data.

Failures are caused by material
deterioration, random failures,
design errors, misuse, and
environmental factors.

Failures are not reproducible.
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Error Analysis

Error analysis, including the analysis of failures and the
analysis of faults, plays an important role in the area of software
reliability for several reasons. First, failure data must be
identified, collected, and analyzed before they can be plugged into any
software reliability model. In doing so, an unambiguous definition of
failures must be agreed upon. Although not critical to theoreticians,
it is extremely important in practice. Second, the analysis of error
sources and error removal techniques provide information in the
selection of testing strategies and the development of new
methodologies. To facilitate our study, error analysis is studied by
severity, error type, special errors, originatiﬁn in the software life

cycle, and uncovered destination in the software life cycle.

Classification by severity

In practice, it is often necessary to classify failures by their
impact on the organization. As pointed out by Musa et al. [155], cost
impact, human life impact, and service impact are common criteria.
Each criterion can be further divided by the degree of severity. For
example, minor error, incorrect result, partial operation, and system
breakdown could be a criterion for service impact.

To estimate the failure rate of each severity level, Musa et al.

[155] suggest the following approaches.
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1. Classify the failures and estimate failure rate separately
for each class.

2. Classify the failures, but lump the data together, weighing
the time intervals between failures of different classes
according to the severity of the failure class.

3. Classify the failures, but ignore severity in estimatipg the
overall failure rate. Develop failure rates for each
failure class by multiplying the overall failure rate by the
proportion of failures occurring in each class,

In addition to the estimation of failure rate of each severity
class, the penalty costs of failure can be measured in dollar value

(62].

Some special errors

Transient error, internal error, hardware caused software error,
previously fixed error, and generated error are some special errors of
interest to software reliability engineers. Transient errors are
errors that exist for too short a time to be isolated [209]. This type
of error may happen repeatedly. In failure data collection, transient
errors of the same type should be counted only once. Internal errors
are intermediate érrors whose consequences are not observed in the
final output [105]. This happens when an internal error has not
propagated to a point where the output is influenced. For instance, in

fault-tolerant computing some errors may be guarded against by the
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redundant codes and not observed in the final output. When setting up
the reliability objective, decisions must be made to either count the
internal error or to simply count the observable errors.

Hardware caused software errors are errors if not carefully
investigated will be regarded as a common software error [95], For
example, a program may be terminated during execution and receive an
error message of operating system error. Without careful
investigation, this error may be classified as software error while the
operating system error was actually caused by the hardware. In
software failure data collection, ﬁardware cadsed software errors
should be excluded from software errors.

Previously fixed errors are old errors which have happened before,
but were not removed by debugging. Generated errors are new errors
introduced by debugging [209]. These two types of errors conform with
the assumption of imperfect debugging which allows errors to be

introduced or no change in the fault count at each debugging.

Classification by the type of error

By analyzing the failure data or trouble reports, errors can be
classified by their properties, One of the classification schemes

given by Thayer et al. [239] includes the following error types.

Computational errors

- Logical errors

Input/output errors

Data handling errors

Operating system/system support errors
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- Configuration errors

- Routine/routine interface errors
- Tape/processing interface errors
- User interface errors

- Data base interface errors

- User requested change

- Present data base errors

- Global variable/compool definition errors
- Recurrent errors

- Documentation errors

- Requirement compliance errors

- Operator errors

- Unidentified errors

As failure data are collected, the frequency of each type can be

obtained. Other classification schémes can be seen in Refs. [56,66].

Classification by error introduced in the software life cycle phase

Within the software life cycle, errors can be introduced in the

following phases [20,239].

- Requirement and specification
- Design
Functional design
Logical design
- Coding
- Documentation

- Maintenance ’

For each phase, the frequency of occurrence can be obtained from
failure data. It's recognized that errors introduced in the early

phase of the software life cycle is more costly to remove [20].
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Classification by error removed in the software life cycle phase

Errors are removed through testing which can be divided into the

following stages [239].

- Validation
- Integration testing
- Acceptance testing

- Operation and demonstration

The frequency of occurrence at each category is also of interest

to software reliability engineers.

Classification by the techniques of error removal

Some techniques of error removal given in Refs. [100,239] are

summarized below.

- Automated requirement aids
- Functional specification review
~ Simulation

- Design language

- Design standard

- Logic specification review
~ Module logic inspection

- Module code inspection

~ Code standards auditor

- Set/use analyzer

= Unit test

~ Component test

- Subsystem test

— System test
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This type of study gives us information in the selection and

validation of software design and testing techniques.
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CLASSIFICATION OF SOFTWARE RELIABILITY MODELS

Software reliability models can be classified into the
deterministic model and the probabilistic model. The deterministic
model studies 1) the elements of a program by counting the number of
operators, operands, and instructions, 2) the control flow of a program
by counting the branches and tracing the execution paths, 3) the data
Elow of a program by studying the data sharing and data passing, and 4)
other deterministic properties of a program.

Performance measures of the deterministic model are obtained by
analyzing the program texture and do not involve any random event. The
deterministic model can be further divided into software science,
information content, software complexity, and software qﬁality
attributes, In general, these models empirically measure the
qualitative attributes of a software and are used in the early phases
of the software life cycle to predict the number of errors in a program
or used in the maintenance phase for assessing and controlling the
quality of a software.

The probabilistic model represents the failure occurrences and the
fault removal as probabilistic events. It can be further divided into
the error seeding model, curve fitting model, reliability growth model,
execution path model, program structure model, input domain model,
failure rate model, nonhomogeneous Poisson process model, Markov model,

Bayesian model, and unified model.
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The error seeding model estimates the number of errors in a
program by using the capture-recapture sampling technique. Errors are
divided into indigenous errors and introduced errors (seeded errors).
The unknown number of indigenous errors are estimated from the number
of introduced errors and the ratio of the two types of errors obtained
from the debugging data.

The curve fitting model uses regression analysis to study the
relationship between software complexity and the number of errors in a
program, the number of changes, failure rate, or time-between-failure.
Both parametric and nonparametric methods havé been attempted in this
field.

The reliability growth model measures and predicts the improvement
of reliability through the debugging process., A growth function is
used to represent the progress. The independent variables of the
growth function can be time, number of test cases, or testing stages,
and the dependent variables can be reliability, failure rate, or
cumulative number of errors detected.

The execution path model estimates software reliability based on
the probability of executing a logic path of the program and the
probability of an incorrect path. This model is similar to the input .
domain model because each input state corresponds to an execution path.

The program structure model views program as a reliability
network. A node represents a module or a subroutine and the directed

arc represents the program execution sequence among modules. By
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estimating the reliability of each node, the reliability of transition
between nodes, and the transition probability of the network, and
assuming independence of failure at each node, the reliability of the
program can be solved as a reliability network problem.

Input-domain model uses 'run" (the execution of an input state) as
the index of reliability function as opposed to "time" to the time-
domain model. The reliability of each run is defined as the number of
successful runs over the total number of runs, Emphasis is placed on
the probability distribution of input state or the operational profile.

The failure rate model studies the Eunct{onal forms of per—fault
failure rate and the program failure rate at the failure intervals.
Since mean—time-between-failure is the reciprocal of failure rate,
models based on time—between~failure also belong to this category.

The Markov model is a general way of representing the software
failure process. The number of remaining Faults is modeled as a
stochastic counting process. When a continuous time discrete state
Markov chain is adapted, the state of the process is the number of
remaining faults and time-between-failure is the sojouring time from
one state to another. If we assume that the failure rate of the
program is proportional to the number of remaining faults, linear death
process and linear birth—~and-death process are two models readily
available., The former assumes that the remaining error is

monotonically nonincreasing, while the latter allows faults to be

introduced during debugging.
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When a nonstationary Markov model is considered, the model becomes
very rich and unifies many of the proposed models. The nonstationary
failure rate property can also simulate the assumption of nonidentical
failure rate of each fault.

The Bayesian model assume a prior distribution of the failure
rate. This model is used when the software reliability engineer has a
good feeling about the failure process and the failure data are rare.
The unified model includes many models as special cases. Besides the
continuous time discrete state Markov chain, the exponential order

statistics [142], and the shock model [113] are two other general

models.

The Deterministic Models

The deterministic model studies the elements of software and their
interrelationship. It is also called software metrics or complexity
metrics. With these metrics, programs can be measured and compared on
the same basis. Software metrics are defined by analyzing the texture
of the program or the flowgraph of the program rather than analyzing
the failure process of the program as the probabilistic models do.
These static models predict the number of errors in the program and do
not involve time-dependent variables. Deterministic models are

discussed below.
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Software science

Devéloped by Halstead [77], software science defines software
metrics based on the number of distinct operators and the number of
distinct operands in a program. Program length, volume, effort, level,
difficulty, mental discrimination, and moments are defined and related
to program size, program development time, program development effort,
and the number of errors in a program [63]. Among these metrics,
progfam length and volume have been used to estimate the number of

errors in a program.

Notation:
n1 ° number of distinct operators
n9 number of distinct operands
N total number of operators
Ng total number of operands
N length of the program
v volume of the program
B number of errors in the program
B estimate of B
I number of machine instructions

Halstead defines

Ni = np4ogang

Ny = n340g2an2

N=N1+N2
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V = NAlogy (171 + 172) .

Previous studies have shown that a high correlation exists between
the number of machine instructiohs and the number of errors in the
program [209). Since program length N is proportional to the number of
machine instructions (I=N/2 if we assume that one machine instruction
contains one operator and one operand), the number of errors in a
program is also proportional to Halstead's program length., The

relationship can be written as
(B=1I) A~ (I =N/2)>B<=N,
Halstead also derived a formula to estimate B from V. The formula is

8 = v/3000.

Entropy function (information content)

The use of entropy function to estimate the number of errors in a

program originates from Shannon's information theory [201].

Notation:

X=(X1,...,%Xy) a set of messages

X{ the ith message in X
Pi probability of x;
£; self-information of x;

H entropy of X
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Hr entropy of each token
Hp entropy of the program

I=(Iy,...,Iy)  input space

I; the ith partition of I
NI; number of inputs in I;
NI total number of input
W software work

Let X=(x1, ceey xN) be a set of messages from which a message is

chosen. Then the self-information of any message, x;, is defined as

£; = — ALogap;

If the probability of a message is 1; its self-information equals
zero. If the probability of a message approaches 0, its self-
information tends to infinity. The expected value of self-information
is called the "entropy" (a measure of disorderness) or information
content of that message and is defined as

n

H=- Z p;Logop;.

i=1

To set up an analogy between entrop& of a set of messages and
entropy of a program, we assume there is an entropy associated with
each token (operator or operand) of the program, and program entropy is
the sum of all the token entropies. Each token is a set of messages
consisting of all the distinct opefators and distinct operands, If the

occurrence of each distinct operator and operand is equal likely, then
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Pi T 1/(”1 + ﬂz) i=l,...,n1%n2

£; = - dLogyp; = Loga(ny + ng).

The entropy of each token is

T
Hp =.21 pif; = logz(nl + ﬂz)
1=

where
nt = n1 * ng.
And the entropy of the program is
Hp = NHp = Ndoga(ny + ng) =V

where N and V are Halstead's program length and program volume,
respectively. Sincé Shannon's program entropy is equal to Halstead's
program volume, the formula of estimating the number of errors from
program volume is also applicable to program entropy.

The idea of entropy metric can be applied to input classes as well
as program tokens. Let the input space I of a program be partitioned
into n classes, the entropy function of the program can be defined as

(197]

n NI NI

i=1 NI NI;
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Since a different design will result in a different partition of
input space and a different entropy value, this entropy function can
serve as a metric of measuring design complexity.

Another variation of entropy function called software work [88] is

defined as

n NI
W= Z NI; fogg — .
i=1 NI;

Software quality attributes

The applicability of time-domain or input-domain software
reliability models so far developed are limited to the testing phase.
These models use failure rate_or the number of remaining faults as a
measure of software reliability. In the specification phase, design
phase, and maintenance phase, the characteristics of a software can
better be represented by software quality attributes rather than
failure rate and the number of remaining errors. Although the
correlation between softwaré reliability and software quality
attributes at a specific time point is difficult to be justified, they
interact with each other in a long-term complicated manner. Poor
quality attributes of today will lead ko poor reliability in the
future.

Software quality attributes include, but are not limited to, the

ones listed below. They are grouped into the specification and design
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phase, initial operation phase, revision phase, and transition phase.
Depending upon the original authors, the definitions of these
attributes may differ slightly and the meaning of two attributes may
duplicate. The detailed definitions of these software quality
attributes can be found in Refs. [21,24,140,148,249]. Software quality

attributes from different sources are summarized as follows.

Initial operation phase
- Reliability
Correctness
Accuracy
Completeness
Integrity
Resilience
- Usability
Validity
Completeness
Documentation
- Efficiency
- Economy
Specification and design phase
- Moduality, structureness
- Clarity, conciseness
~ Consistency, stability
Revision phase
- Maintainability
- Understandability
Clarity
Documentation
- Testability
Traceability

Accessibility
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- Flexibility
Modifiability
Expandability

Transition phase

- Portability

- Reusability

- Modularity

- Interoperability

In addition to the descriptive definition, some software quality
attributes have been expressed quantitatively. For example,
consistency of requirement specification has been represented by a
connectivity matrix and a reachability matrix (58], and maintainability
has been represented by a connectivity matrix [185]. In addition,
complexity metric is another quantitative way of representing software
quality attributes. Although the correlation between software quality
attributes and complexity metrics has not been widely studied, numerous
complexity metrics have been suggested for their empirical relationship
[21,216]. A detailed discussion of complexity metrics is given in the
next section.

To measure and control the quality of a software, the software
quality attributes and their highly correlated complexity metrics can
be measured after specification and design phase, during operational
phase, and after each major change in the maintenance phase. Anomolies
reflected by the quality attributes can be identified and corrected.

Since many attributes and complexity metrics are involved, a decision
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table can be used to keep track of the conditions of each attribute and
the actions to control the quality of the software. More work should
be done in this area to find out quantitative metrics highly correlated
to software quality attributes, and attributes highly correlated to

reliability costs, resources, and productivity.

Complexity metrics

Complexity metrics in the context of software engineering is a
measure of sophistication of a software program as opposed to the time
complexity in algorithm analysis, which measures the running time as a
function of problem size. The ultimate purposes of complexity are to
1) estimate the costs, resources, and time required to develop, test,
and maintain a software, 2) measure the reliability of a software and
the productivity of software development, and 3) serve as a
quantitative representation of software quality attributes.

Although the relationship between complexity metrics and software
quality, reliability, and productivity is empirical, complexity metrics
have been widely used by practitioners because of their simplicity,
intuition, and ease of automation. Once the program of measuring a
complexity metric is written, this metric can be measured repeatedly
with only the cost of computer time. Numerous complexity metrics have
been proposed from the standpoint of program size, Halstead's software
science, information content, data flow analysis, control flgw

analysis, and program syntax. In this review, only those metrics
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related to reliability, error counting, and software quality attributes

are discussed.

Lines of code Lines of code is the most widely used metric of

estimating the number of errors in a program, the resources required to
develop a program, and the productivity of programmers, Depending upon
the authors, lines of code may mean the number of machine instructions,
the number of executable source statements with or without data

declaration, or the total number of source statements (including

comments). It has been shown that the number of errors in a program is
proportional to the size of the program. This linear relationship can

be written as

B = KI
where
B Number of errors in the program before debugging
I Number of instructions
K Constant of proportionality,

The value of K is about 0.02 error/machine instruction [209].

Program change Program change [49] is the textual change in

the source code of a module during the development phase. It includes
changes to statements, insertion of statements, and changes followed by
the insertion of new statements. A program change represents a

conceptual change to the program. It has been shown that a high
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correlation exists between the total number of changes and the total
error occurrences.

Takahashi and Kamayachi [236] studied the changes in program
specification rather than textual changes. They also found a high
correction with the number of errors in the program.

Job step A job step is a programmer activity at the operating
system command level [49]. Typical examples are editing texts,
compiling source modules, link object modules, and executing entire
program. This metric quantifies the frequency of computer system
activities and can be used to estimate the requirements of computer
resoq;ces, programmer's time, and programmer's efforts as well as
software reliability.

Data binding Defined by Basili and Turner [12], a data binding
occurs when a procedure/function P modifies a global variable X and a
procedure/function Q access X. When the execution sequence of P
proceeds that of Q, data binding denoted by (P,X,Q) occurs. A higher
number of data binding increases the possibility of causing error when
procedures/functions are changed.

Data span Data span is a measure of locality of data
references, It is defined as the number of statements between two

references to the same identifier with no intervening references to

that identifier [55].

Cyclomatic number McCabe's cyclomatic number [139] originated

Erom graph theory. The cyclomatic number V(G) of a graph G with n

nodes, e edges, and p connected components is
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V(G) = e - n + p.

In a strongly connected graph (there is a path joining any pair of
nodés), the cyclomatic number is equal to the maximum number of
linearly independent circuits. The linearly independent circuits form
a basis for the sgt of all circuits in G and any path through G can be
expressed as a linear combination of them.

When a program i3 represented as a flowgraph with an unique entry
node and an unique exit node, this flowgraph becomes a strongly
connected graph if a dummy edge from the exit.node to the entry node is
added. When the numbe; of connected components is greater than 1,
i.e., a main program and some subroutines, the above formula is

modified to
V(G) = e - n + 2p.

The cyclomatic number of a graph with multiple connected
components is equal to the sum of the cyclomatic number of each
connected component. Another simple way of computing the cyclomatic
number is as follows.

V(G =7 + 1

where 7 is the number of predicate nodes (decisions or branches) in the
program. In other words, the cyclomatic number is a measure of the
number of branches in a program. A branch occurs in IF, WHILE, REPEAT,

and CASE statements (GO TO statement is normally excluded from the
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structured program). The cyclomatic number has been widely used in
predicting the number of errors and as a measure of software quality.

Maximum intersection number In contrast to the cyclomatic

number which measures the number of decisions, the maximum intersection
number (MIN) proposed by Chen [31] measures the levels of nested
decisions. MIN is obtained by cutting a strongly connected graph such
that each region is entered exactly énce. Given a program of n
decisions, the upper bound of MIN is n+l when n-level nested structure
occurs, and the lower bound of MIN is 2 when none of the decisions is
nested.

Knot count Knot count was suggested by Woodward et al. [251].
It measures the number of crossings of control flow in a program.

Calls and jumps An early experiment by Akiyama and Fumio [3]

shows that the number of errors is proportional to the number of
subroutine calls plus the number of jumps (decisions). A simplified
metric of this type considers only the number of subroutine calls or

the number of jumps.

Maintainability Haney [79] proposed a method of predicting

maintainability by using a transition probability matrix. The expected
number of changes at each module can be predicted from the initial

number of changes of each module and a transition probability matrix of

module change.
= 2 _ ;1
T=A(I+P+P°+ .,.,) =A(-P)

where
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P = (Pij) transition probability matrix of module changes

Pi: probability of changing module i will result in

changing module j
A= (a;) vector of initial changes
a; number of initial changes in module i
T = (t;) vector of total changes
t; expected number of changes in module i

I identity matrix.

For a different design, the transition probability of module
change, P, and the vector of total changes, T; are different. Given
that P and A are available for alternative designs, T can be computed
for each design and serves as a measure of maintainability.

By letting a; = 1 for all i, a metric of design complexity is

defined as [185]

l n
m=-Z(ti-1)
n i=1
where
m design complexity
n matrix size.

Notice that the series I + P + P2 + ... converges when the eigenvalue

of P is greater than 0 and less than 1.
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Accessibility Mohanty [148] defines the accessibility of a

node as

Akr = Z AjiQiik1Pij
1

J
where
Nij node ij; the jth node of the ith level in the graph
Aij accessibility of N;;
Pij probability of successfully executing Nij
Qijki probability of entering Ny, after executing Nij-

Mohanty also suggests that Pij can be estimated by

Pij = kp/Cij

P constant of proportionality

Cij some measure of complexity.

Since Pij is the reliability of node N;ij» the complexity metric
chosen must have a high correlation with reliability,

Testability Based on accessibility, Mohanty [148] further

defines testability as
Tij = AijPij

TP; = [z (1/1; ) ]-l

1



98

T

M i=1 TP;
where
Tij testability of Nij
TP; testability of path i
T testability of the program
S; set of node of path i
M minimum number of paths in the program that cover all the
nodes.
Testedness Also based on accessibility, Mohanty [148] defines

testedness as

F;:
]
Wi; = 1 - exp(- —-—-—)
Ajjaij
W=2x Wij/ISI
S
where
W testedness of the'program
wij testedness of node Nij
qij=1'Pij unreliability of node Nij
Fij number of times Nj; is executed

S set of nodes in the program.
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From the above formula, the testedness of node Nij is an
exponentially increasing function of the number of times Nij is
executed with rate 1/(Aij"Tij)’ and bounded by 1. As F;; approaches
from O to infinity, wij increases from 0 to 1.

Program evolution The program evolution model proposed by

Belady and Lehman [17] describes the phenomenon of continuing changes,
continuing growth, and increasing entropy of a program after release.

A complexity metric for module changes is defined as

CR = MHR/MR
where
R " release sequence number R
Mg number of modules at release R
MHp number of modules handled in release interval R (Ig).

To predict Cp, two formulas have been suggested.

CR =Ko+ KR + KgRZ + § + ¢

Cp = Kg + KjR + KgRZ + KgHRy + § + e

where
Kp,sK),Ko,Kg coefficients
S cyclic component
€ stochastic component; error
Ig release interval R

HRg=MHp/Ig handle rate of release R.
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Another complexity metric called fault class is defined as

¢; = 2i7!

where C; is the fault complexity at release i. At each release, the
remaining faults are either faults generated at that release or

residual faults. Therefore, the total number of combinations (fault
classes) at release i is 2i-1,

Schneider model Schneider [195] uses development effort in

man—-month and the number of subroutines to estimate the expected number

of software problems., The empirical formula is given as

/ 1.667
) K( S/K

0.047
where
E(N) expected number of problems
E efforts in man—month
S number of subroutines
K thousand of source codes
E(N.) expected remaining errors.

By assuming a ratio of 100:15 between detected errors and remaining

errors, the author gives

E(N.) = 0.15E(N).
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Hybrid model The hybrid model uses more than one complexity

metric discussed above to estimate the number of errors in the program.
The types of complexity metrics included can be studied by regression

analysis.

Environmental factors and error estimation Methods of error

estimation discussed above are all based on complexity metrics. A
different approach taken by Takahashi and Kamayachi [236] studies the
correlation between error rate and environmental factors. They
considered the type of program, the Erequency of specification change
(CHG), the average number of progr;mmer experience, the difficulty of
programming (DIF), the amount of programming effort (EFF), the level of
programming technology, the volume of design documentation (DOC), and
the percentage of reused modules. The authors have shown a close

relationship between error rate and CHG, DIF, EFF, and DOC.

The Probabilistic Models

The probabilistic models treat software failures and errors
removal as random events. They can be broken down into the error
seeding model, curve fitting model, reliability growth model, execution
path model, program structure model, input domain model, failure rate
model, naonhomogeneous Poisson process model, and Markov chain. Among
those, curve fitting model and reliability growth model are traditional
techniques used in hardware reliability and other areas. The others

were developed specifically for software.
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The probabilistic model is the mainstream of software reliability
study because it can be integrated with the hardware reliability
theory. As systems are getting more and more complex, more will
involve both hardware component and software component. This common

framework makes it possible to evaluate the reliability of a hardware-

software system.

Error seeding model

Originated from the idea of estimating the size of an animal
population from recapture data [57], Mills [144] proposed an error
seeding method to estimate the number of errors in a progfam by
introducing pseudoerrors into the program. From the debugging data
which consist of indigenous errors and induced errors, the unknown
numbér of indigenous errors can be estimated. This model can be
represented by a hypergeometric distribution,

The probability of k induced errors in r removed errors follows a

hypergeometric distribution.

(%) (e )

P(k;N+ny,ny,r) =

N+n1
()
where
N number of indigenous errors
nj number of induced errors

r number of errors removed during debugging
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k number of induced errors in r removed errors

r-k number of indigenous errors in r removed errors.

Since ny, r, and k are known, the maximum likelihood estimate of N
can be shown to be

ny (r~k)

k

This- method Qas criticized for the inability of determining the
type, the location, and the difficulty level of the induced errors such
that they will be detected equal likely as the indigenous errors.

Basin [14] suggests a two-step procedure with which one programmer
detects nj errors and a second programmer independently detects r
errors from the same program. With this method, the nj errors detected
by the first programmer resembles the induced errors in the Mill's
model. Let k be the common errors found by two programmers. The

hypergeometric model becomes

P(k;N,N-ny,r) = .

and the MLE of N is



104

SinceAno errors are actually introduced into the program, the
difficulties in Mill's method are overcome.

Lipow [121] modified Mill's model by introducing an imperfect
debugging probability q. The probability of removing k induced errors
and r-k indigenous errors in m tests is a combination of binomial and

hypergeometric distributions.

(%) ()

(")

m -—
P(k;N+n1,n1,r,m) = (!‘) (l_q)r qm r

N2r-k20,n 2k 20, andm 2 r.
The interval estimate of N can be found in Huang [90] and Ramzan [180].

Reliability growth model -

Widely used in hardware reliability to measure and predict the
improvement of the reliability program, the reliability growth model
represents the reliability or failure rate of a system as a function of
time, testing stage, correction action, or cost. Dhillon [42]
summarizes 10 reliability growth models developed for hardware systems.
This empirical approach is also adapted for predicting the progress of
software debugging process. Reliability growth models reported for

software are summarized below.

Duane growth model Plotting cumulative failure rate versus

cumulative hours on log-log paper, Duane observed a linear relationship

between the two., This model can be expressed as
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Ae(t) = N(t)/t = at™P

and

£ogh, = ALoga - fLogt
where

N(t) cumulative number of failures

t total time

Ao cumulative failure rate

a,f parameters

The above formula shows that fogA. is inversely proportional to
Logt.

This model was adapted by Coutinho [36] to represent the software
testing process. He plotted the cumulative number of deficiencies
discovered and the cumulative number of correction actions made versus
the cumulative testing weeks on log—log paper. These two plots
revealed a find-and-fix eycle, and are jointly used to predict the
testing progress.

The least squares fit can be used to estimate the parameters of

this model [42]. .

Weibull growth model Wall and Ferguson [247] proposed a model

similar to the Weibull growth model for predicting the failure rate of

a software during testing.

Notation:
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N(t) cumulative number of failures at time t

M(t) maturity (man-month of testing, CPU time, calendar time,

or number of tests)

M, scaling constant

N, parameters to be estimated

(L) failure rate at time t

Ag initial failure rate; a constant
G(t)  M(t)/M,

The model is summarized as follows:

N(E) = Ng[6(t)]1P

i

A(E) = N'(E) = NoG' (B [6(0)187L.
Let NoG'(t)=Ag, then

ACE) = agle' (p)1P7!

Ao
= — gle' (£)1R° 1,
B

For 0 < 8 < 1, A(t) is a decreasing function of t. By letting a=)\y/§,

this model is similar to the Weibull growth model with failure rate
At = aptfTl,

This is the failure rate when failures follows the Weibull

distribution. Note that the failure rate of the Weibull growth model
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can be derived from the Duane model. The MLEs of Weibull parameters
can be found in Ref. [42].

Wall and Feguson tested this model on 6 software projects and
found that failure data correlate well with the model. In their study,
B lies between 0.3 and 0.7.

Wagoner's Weibull model Adapted from hardware reliability,
hag ,

Wagoner [246] uses a Weibull distribution to represent time between

program failures. Let

£(t) density function of time between failure

At failure rate function

R(t) reliability function

a,f scale and shape parameters

n total number of failures

n; numbef of failures up to the ith time interval
F(t) ny/n.

The Weibull distribution has the following properties.

aﬁ(at)p—lexp[-(at)ﬁ]

£(t) =

R(t) = 1 - F(t) =.exp[-(at)5]
and

A = aplat) Pl

The parameters estimation can be found in Ref. [246].
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Logistic growth curve model Suggested by Yamada and Osaki

I252], the logistic growth curve model has been used to represent the
cumulative number of errors detected during debugging. The expected
cumulative number of errors detected up to time t is

k

m(t) =
1+ ae-ﬁt

where K, a, and § are parameters to be estimated by regression

analysis.,

Gompertz growth curve model Nathan [165] adapted the Gompertz

model to represent the cumulative number of errors corrected up to time

t. The model has an S—shaped curve with the following form,

t
N(t) = aA”
where
a number of inherent errors
N(0) number of corrections made before the first test interval
is completed
N(t) cumulative number of errors corrected at time t
A N(0)/a
£ny correction rate.

The above formula can be written as

Lnlen(N(t)/a)] = 4nlen(N(0)/a)] + tsony
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where a is the upper limit of N(t) when t approaches infinity.
The Gompertz model has been used in hardware reliability to

predict system reliability. The model is as follows.
t
R(t) = aB”

where R(t) is the system reliability, a is the reliability upper bound,
and v is the rate of improvement. One method of estimating the

parameters is given in Dhillon [42].

Hyperbolic reliability growth model Sukert [229] adapted the

hyperbolic reliability growth model to represent the debugging process
of software. He assumed that testing is divided into N stages, each
consisting of one or more tests until a change is made. Success counts

and failure counts are recorded and fitted to the following model.

Notation:
j testing stage
R; reliability at the jth stage
v growth rate
Reo upper bound of the software reliability.

Then the reliability of the software at stage j is

and the least squares estimates of Ry and a are in Ref. [125].
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This model is a special case of a more general growth model for
reliability improvement with a sequence of testing stages [254]. The
model is
R; = Rao = 7E(j).

By setting £(j)=1/j, the hyperbolic model is obtained.

Curve fitting model

The curve fitting model finds a functional relationship between
dependent and independent variables. Linear regression, quadratic
regression, exponential regression, isotonic regression, and time
series analysis have been applied to software failure data analysis.
The dependent variables are the number of errors in a program, the
number of modules change in the maintenance phase, time between
failures, and program failure rate. Models of each type are discussed

below.

Estimation of errors The number of errors in a program can be

estimated by a linear [9,176), or quadratic [93] regression model. A
general formula is
N =1Z a;X;
1
or

N=2Za;X; * Z b;X;

where
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N number of errors in the program
X the ith error factors
aj,b; coefficients,

Typical error factors are software complexity metrics and the
environmental factors discussed in previous sections, Most curve
fitting models involve only one error factor. .A few of them study
multiple error factors.

Estimation of change Belady and Lehman [17] use time series

analysis to study the program evolution process. Some of the models

studied by them are

Mp = Kg + KfR + § + ¢

= Kg + KjR + Ksz + S+ ¢

Q
=
1

= Kgp + KR + K2R2 + KqHRg + S + ¢

(%]
=
I

HRR = Ky + S + ¢

CMHp = Ko + KyD + S + ¢

where
R release sequence number
Mp number of modules at release R
Ip inter-release interval R
MHR modules handled in Ip
HRR MHR/IR; handle rate
Cr MHR/Mp; complexity

D number of days since first release



112

CMHp cumulative modules handled up to day D

€ error.

This model is applicable for software having multiple versions and
evolving for a long period of time, for instance, the operating system.

Estimation of time between failures Crow and Singpurwalla [38]

argue that software failure may occur in clusters. Also addressed by
Ramamoorthy and Bastani [178], failure data may come in clusters at the
beginning of each testing when different testing strategies are applied
one after another. To investigate whether clgstering happens
systematically, a Fourier series was used to represent time between
failures [38]. Data from two software projects were analyzed.
Unfortunately, no statistical test was done to assess the adequacy of

this model.

Estimation of failure rate Isotonic regression and exponential

regression have been proposed to estimate the failure rate of a

software.

Isotonic regression Given failure times tj, ..., ty, a

rough estimate of failure rate at the ith failure interval is

Rym—
Bivl ~
Assuming that the failure rate is monotonically nonincreasing